
CROSS ASSEl!BLER
FOR THE MC!H8 FAl'JLX

Produced by

Mumford Micro Systems
Box 400, Sumcerland, CA 93067

(805) 969-4557

•••••••••••••••••••••••••••••
• 8048 CROSS ASSEMBLER •
• TABLE OF CONTENTS •
•••••••••••••••••••••••••••••

Introduction ••••••••••••••••••••••••••••••••••••• • ••••••••••••••••• 2

Section 1
,. 1
1.2
1.3
1.4
1.5
1.6

Section 2
2. 1
2.2
2.3
2.4
2.5

Section 3
3. 1
3.2
3.3
3.4
3.5

Source Format •••••••••••••••• • • •••• • •••••••••••• •••••• 3
Creation of a source file ••••••••••••••••••••••••••••• 3
The label field 3
The opcode field •••••••••••••••••••••••••••••••••••••• 3
The operand field •••••••••• • ••••••••••••••••••• ••••••• 3
The comment field 3
Examples •• 4

Running The Assembler ••••••••••••••••••••••••••••••••• 5
Input file specification •••••.•••••••••••••••••.•••••• 5
Output file specification ••••••••••••••••••••••••••••• 5
Switches •••••••••• •• ••••••••••••••••• • •••••••••••••••• 5
Output file format 6
Examples ••••• •• ••• ••••• •• ••• •••• •••••••••••••••••••••• 6

Assembler Functions ••••••••••••••••••••••••••••••••••• 7
Symbols ••• 7
Numeric constants • • ••••••••••••••••••••••••••••••••••• 7
Character constants ••••••••••• •••• •••• ••••••• ••••••••• 7
Location courrter reference ••••••••••••••.••••••••• •••• 8
Arithmetic, Boolean, and relational operators ••••••••• 8

Section 4 Pseudo-Ops •• 9
4. 1 DB • •••• •••• • ••••• •••••• •• ••••••••••• ••••••.••• • •• ••••• 9
4 . 2 OS ••• • ••••••••••• •• •••••• •••• •••• •• .••• ••••••••••••••• 9
4.3 ow •••• •••••• ••••• •••••• •• •••• •• ••••• •••••••• •• ••••••• 10
l!.4 END .. 10
lj. 5 END IF •• 10
lj .6 ELSE ••••••••••••••••••.•••••••••••••••.••••••••• • •••• 11
4.7 EQU •• 11
lj • 8 FILL ••••••••••••• \ •••••••• ••••• •••••••• •••• •• ••••••• • 11
4. 9 IF ••••••••••••••••••••.••••••••••••••••••••• • •••••••• 12
4.10 LIST ••••••• ••••.•••••••••••••••••••••••••••• ••••••••• 12
4.11 MICR0 •••••••••••••••••••••.•••••••••••••••••••••••••• 13
lj. 12 ORG ••••••••••••.••••••••••.•• .• •••••••••••••••••••••• 13
4.13 PAGE •••••••• • • • •••• ••••.• • • •• • • •• •••••••••••• •••••••• 13

Appendix A
Appendix B
Appendix C
Appendix D

Instruction Set Summary •••••••••••••••••••••••••••••• 14
Instruction Mnemonics and Opcodes •••••••••••••••••••• 17
Error Messages ••••••••••••••••••••••• • ••••••••••••••• 23
Sample I/0 and Math Routines····••····•········•·•:··25

Page 1

I ntroduction

This 8048 Cross Assembler supports the the Intel MCS-48 family of single chip
micrcc-ontrollers, which includes a large number of individual components. The
MCS- 48 family contains five basic groups, each characterized by slightly
different instructions sets. This assembler will support all groups and their
r espective instructions with a pseudo- op to declare which set is desired. In
addition, the assembler includes a large number of other pseudo- ops for s ymbol
def inition , value storage , conditional assembly, and l i sti ng control . It
suppor ts standar d I nt el mnemonics, and includes a full set of arithmetic,
l ogical , and r e l ational operators. Other f eatures include complete expression
e valuation ,_ t en significant c haracter s f or symbols , and i nf ormative error
messages.

Source for the assembler may be generated by just about any text editor which
will create an ASCII file . Each line must end with a carriage return, except
that a li ne feed a.ay follow . The source f ile should not contain line numbers or
any control characters other than carriage return, line feed , and tab . Source
files are assembled directly from disk to an object file on disk . Several
switches may be specified when invoking the assembler which affect listing,
symbol table generation, and error display.

I t is beyond the scope of these instructions to serve as a programming manual
f or tiCS-48 family , but more information o n these chips may be obtained in the
I ntel Component Data Catalog , the Int el Microcontroller User ' s Manual , and the
Intel Microcontroller Applications Handbook , as well as data sheets on the
indi•:idual components . Liter atu.re a.ay be ordered f rom Intel at the followini;
addre!:s:

Intel Corporation
Literature Department SVQ- 3

3065 Bowers Avenue
Santa Clara , CA 95051

The one component in the MCS-48 family that will be of most interest to the
hobbyist or experimenter is probably the 8748 . This is a single chip
microcomputer with 1024 words of EPROM memory , 64 bytes of RAM memory, 27 I/0
lines , an 8 bit timer/counter, and an internal cl·ock oscillator in a single
package . It is ideally suited to many control applications that previously
would have required many separate components for the processor , program memory ,
RAM, I/0 port~, clock, and address decode logic.

Micr ocontrollers in this family have found wide useage in many "smart" computer
peripherals such as printers, modems , and keyboards , as well as in more mundane
consumer appliances like micr owave ovens and washi ng machines . With the
availability of a disk- based cross assembler f or the 8048 family that will run
on the popular TRS-80 Models 1, 3 , and 4 , it becomes possible for t he hobbyist
and experimenter to use these readily avail able and inexpensive components in
their own individual dedicated controller applications from phone dialers and
print spoolers to solar energy controllers and burglar alarms . Many such
projects will require little more than a five volt power supply, an 8748 , and a
few switches and passive components .

Page 2

• -~ l"_.

r
r
r
r
r

r
[

r
l
[

l
L

L

L
[

L

Section - Source Format

1,1 Creation of a source file
The assembler is designed to assemble from a text file which has been
previously written with a text editor . There are many word processors available
for the TRS-80, and probably any of them will generate an acceptable source
file. The source file should contain only ASCII characters, and program lines
should not be numbered. Each source line wil l have four basic fields, though
all fields may not be needed on each line . Fields may be separated with a
single space, mul t iple spaces, or tabs.

1,2 The label field
The l eft- most field is the label field . If a label is used on a line , it must
begin with the first character on that line . Labels may contain upper- case
letters, lower- case letters, numbers , the underline character, a question mark,
or the "at" sign (@) . Lower- case letters are considered distinct and different
from upper- case letters. The first character of a label may not, however, be a
number. Labels may be up to ten characters in length and all characters are
significant . If desired , labels may end with a colon which can also serve as a
field delimiter for the label field.

1,3 The opcode field
The second field in a source line is the opcode field. A summary of legal
opcodes for the var ious groups in the MCS- 48 family is given in Appendix A.
Opcodes must be entered in upper- case characters to be recognized by the
assembler . Some opcodes will require an operand in the next field , and some
opcodes stand alone .

1,4 The operand field
The third field in a source line is the operand field . This field includes any
registers referenced by the instruction in the opcode field and any symbols,
constants , or expressions required by the opcode . A complete listing of the
operands required for each instruction is given in Appendix A. When the operand
is an immediate numeric value , arithmetic expressions may be used. Symbols
which reference labels or symbols which are equated elsewhere may also be used.

1,5 The comnent field
The right-most field in the source l ,ine is the comcent field. Actually , the
comment field may begin anywhere fn the source line, but it must always begin
with a semicolon , and everything which follows the semicolon will be considered
a comment and will be ignored by the assembler .

Page 3

1.6 Examples
The following lines are typical source lines for the assembler:

SYMBOL OPCODE
START MOV
START: DB
ABCDEFG: EQU

JMP
PRTDRV:

CALL
;STORAGE AREA

MOV

OPERAND COMMENT
A,1O ; comment
'This is a test '
START+22
EXIT ;comment field can be anywhere to right of operand

;label with no opcode
PRINT

A,(VALUE1+VALUE2) AND MASK

In general, the source file will begin with an ORG pseudo-op (see Section 4.12)
followed by ·the body of the program, and terminate with the END statement (see
Section 4 . 4). Once the source file has been written and saved on disk, it is
called into the as sembler on the "command line" when the assembl er is run.

Page 4

r
r
r
r
r
r
r
r
l
[

l
[

L
L

L

t
[

l
.:.-.. - r

Section 2 - Running The Assembler

The name of the assembler is CASH/CHD. The command line used to run the
assembler has the general form:

CASH INPUT [OUTPUT] [-LSTPE] <ENTER>

The first word, CASH, is required. It is the name of the assembler, and when
the computer encounters it in the command line the assembler is loaded into
memory and begins to run.

2,1 Input file specification
The second .word, INPUT, represents the name of your source file. It might
really be INPUT, or it might be CONTROL, or TEST/SRC:1, or any other valid
filespec you have used for your source file . This is the file which CASH will
read and try to assemble into an "obj ect file". You must specify an input file
so the assembler will know what to assemble. If no input file name is given, an
error message will be generated.

2.2 output file specification
The third word, OUTPUT, is in bra ckets because it is optional. It represents
the filename you want to give the object file generated by the assembler. The
object file is the assembled program created by the assembler which will be
programmed into the 87~8 (or any other microcontroller you are writing for).
You do not have to create an object file every time you run the assembler,
however. If you just want to assemble your source to check for errors, or to
generate a listing, don't specify an output file name. If no output filename is
given in the command line, no output file will be generated. The output
filename may be any valid filespec. It might really be OUTPUT, or it might be
CONTROL/OBJ, or TEST/ROH:2.

2,3 Switches
The forth expression on the command line is also in brackets because it too is
optional. This expression contains the "switches" you might use to give further
instructions to the assembler. Switches tell the assembler how you want it to
display the assembly . There are four legal switches, and if any one of them is
used it mus~ be preceeded by a hyphen(-). If more than one switch is
specified, it may be separated from the preceedi~g one by a space, a comma, a
tab, or nothing at all. The legal switches are:

L Display a listing of the assembly.
S Display the symbol table.
T Truncate the object listing to one line per instruction.
P Route the listing, error messages, or symbol table to

the line printer.
E Halt the listing after each error is displayed.

(Hit <ENTER> to resume)

The default values are no listing, no symbol table, don't truncate object
li s t i ng, output to the video screen, and don't halt after errors. Illegal
switches will generate an error message and assembly will be aborted.

Page 5

2,4 Object file format
When an output file has been specified on the command line the assembler will
generate a object file on disk. This object file will be a series of bytes
which represent the actual object code for the microcontroller. This file is
not an Intel hex file or a Radio Shack command file. It is just the bytes
needed by the microcontroller to execute as a program. Once this file has been
created, it is up to the user to program them into the particular chip they
will be run in. Different programmers have different requirements. If your
programmer needs a hex file, you will need to generate one from the binary data
file created by this assembler. If you built the programmer described in the
plans which are available from Mumford Micro Systems, it came with software
which is ready to run on the binary file created by this assembler.

2,5 Examples
The last word in the sample command line, <ENTER>, means that you have to hit
the ENTER key after typing the previous characters. The following examples will
help clarify the various ways of calling up the assembler:

CASM FILE1

This command will get the input file FILE1, assemble it, and list any errors on
the video screen. No source listing will be displayed and no output file will
be generated.

CASM FILE1 -L

This command will get the input file FILE1, assemble it, and list it and any
errors on the video screen.

CASM FILE1:1 FILE2 -P

This command will get the input file FILE1 from drive 1, assemble it, write the
assembled code to the output file FILE2, and list any errors on the printer.

CASM FILE1 FILE2 -LSTPE

This command will get the input file FILE1, assemble it, list it on the
printer, print the symbol table on the printer, truncate any multiple byte
instructions in the source to a single line in the listing, halt the display
after each error message is printed, and write the -assembled object code to the
output file FILE2.

Page 6

r
r
r
r
r
r
r
r
I

l
l

l
L

l
L

t
l

Section 3 - Assembler Functions

3 , l Symbols
Symbols (or labels) in the assembler can be up to 10 characters in length and
may include any upper- case letter , any lower-case le t ter , any number, an
underline character, a question mark, or an "at" sign(@) . The first character,
however, must not be a number . If your computer can generate lower- case
characters, t hey are considered as different characters than upper- case ones.
The l abel "LOOP", therefore, is distinct and different from "Loop" and "loop" ,
and all three are legal symbols. The following words are all l egal symbols and
l abels :

LOOP . testpoint Loop99 @HERE U!LWHAT? A8?@_Z THIS_TOO??

3,2 Numeric constants
The assembler will accept numeric constants in decimal (base 10), hexadecimal
(base 16), binary (base 2) , or octal (base 8). The default base, or RADIX, i s
decimal. All other numbers will require a "radix specifier". These specifiers
are single letters which must follow any number which is not in the default
base (decimal). They are "D" for decimal (yes , i t is redundant and unnecessary,
but it is allowed), "H" for hexadeci mal, " Q" for octal, and "B" for binary.
Hexadecimal numbers that begin with a letter must be preceeded with a zero to
tell t he assembler that they a r e not symbols. The fol l owing numbers are
examples of the possible formats :

3,3 Character constants

212H
234Q
11 110000B
OFEFEH
10D
1234

hexadecimal
octal
binary
hexadecimal
decimal
decimal

Character constants are used like numeric constants except that they are
specified as an ASCII character in single quotes instead of as a specific
number . The assembler will take the 'ASCII value of the characters in quotes to
use in its oper ations. Double ch; racters may be used to represent 16 bit
values . Since the single quote character is used as a delimiter it becomes a
little awkward to use the single quote as a character itself. To ge t around
t his difficulty , the assembler will interpr et two single quotes together as the
single ASCII character " single quote" instead of as two delimiters . The
following are examples of legal character constants:

'A' = 41H
' AB ' = 4142H
" " = 27H

Page 7

_ .. ~ ..

3,4 Location counter reference
The dollar sign may be used to represent "the current location in memory" for
numeric expressions. This is perhaps best explained by example. In the sample
source bel ow, the assembler has assembled object code through address 007 7 H
when it encounters an instruction with a dollar sign in tht operand field. The
next available (or current) address is 0078. The dollar sign will be taken to
mean the number 0078 when the expression "$-9" is evaluated, resulting in the
value 6DH.

ADDRESS OBJECT CODE

0075
0076
0077
0078

OA
77
77
EF6D

OPCODE OPERAND

IN
RR
RR
DJNZ

A,P2
A
A
$-9

3,5 Arithmetic. Boolean, and logical operators

.. ,·

CASM has many arithmetic, logical, and relational operators which can be used
in numeric expressions. The characters used to r epresent these operators are
defined below:

Arithmetic Operators
+ --> Addition

--> Subtraction
Multi plication
Division

• -->
I -->

% or MOD -->
+ -->

Modulus (remainder of division)

- -->
Unary plus (indicates a number is positive)
Unary minus (indicates a number is negative)

Boolean Operators
or OR --> Logical OR
or XOR --> Logical XOR

& or AND --> Logical AND
or NOT --> Unary logical negation

!!elati,onsl 012!:lrator s
> --> Greater than
< --> Less than
= --> Equal to
>= --> Greater than or equal
<= --> Less than or equal to
I= --> Not equal to

Order of evaluations precedence
Unary + Unary - NOT
• I MOD
+
< <= > >= = I=
AND
OR XOR

to

(Highest precedence)

(Lowest precedence)
Up to 4 levels of parentheses can be used to change precedence.

Page 8

r
r
r
r
r
r
r
r
[

[

[

L
L
L
L
l
t
l

Section 4 - Pseud<rOos

Instructions which are accepted by the assembler but are not part of the
instruction set of the microprocessor are called "pseudo-ops". They are
instructions for the assembler as opposed to instructions for the
microprocessor. Some pseudo-ops require an argument, and some stand alone. The
pseudo-ops accepted by this assembler are shown below. In the examples
following each pseudo-op, the left-most column represents the actual code
generated by the instruction (in hexadecimal), the next column is the
pseudo-op, the third column is the argument (if any), and the last column is a
comment describing the meaning of each line.

4,1 DB
Define Byte. This instruction places specific numeric values in the object
file. It requires an argument which can be a specific number, a string
delimited by single quotes, or an arithmetic expression. Commas can be used to
define several bytes on one line.

1A
41 41 41 41
oc 01
8D

4,2 PS

DB
DB
DB
DB

1 AH
'AAAA'
12,5-4
HIGHBIT+CR

;SINGLE DEFINITION
;MULTIPLE CHARACTERS WITHIN STRING
;MULTIPLE ARGUMENTS WITH COMMAS
;ARITHMETIC EXPRESSION

Define Storage. This instruction reserves a number of memory locations for
storage. Admittedly, in a ROM-based application like the 8048 family, a define
storage pseudo-op is of questionable value. The memory locations which are
reserved with this instruction are not left unaltered, however. They are filled
with the current value of the "fill character", which is defined under the
pseudo-op FILL (see below). This feature allows the programmer to set all
unneeded bytes in the object file to the unprogrammed state for the
microprocessor. This feature allows a HEX file (required by some EPROM
programmers) to be generated from the object file that will define every memory
location, yet not program locations that are uneeded.

The argument of the DS pseudo-op is a 16 bit expression, so it may be any
number or expression that evaluates \to a number in the range O to 65535.

00 00
00 00
00

DS 5 ; RESERVES 5 BYTES
;CURRENT FILL CHARACTER IS 00

Page 9

4,3 DW
Define Word. This instruction defines two bytes to be placed in the object
file. The argument of this operator can be a specific number, an arithmetic
expression, or a two character string delimited with single quotes. Commas may
be used to define several words on the same line. Note that bytes are not
placed in reverse order in the object file , as is the case with assemblers for
some microprocessors (like the ZSO).

01 02
02 04 41 42
02 33

4 ,4 END

DW
DW
DW

0102H
0204H, 'AB'
START- END

;SPECIFIC VALUE
;NOTE THE DOUBLE CHARACTER STRING
; 16 BIT ARITHMETIC EXPRESSION

The END stat·ement tells the assembler that the end of the source file has been
reached. Source files must end with this statement or a NO END FOUND error will
be generated. Also, there should be no text following the END statement or the
error message DATA FOUND AFTER END will be displayed. The END statement does
not require an argument.

END ;END OF PROGRAM

4,5 ENDIF
The ENDIF pseudo-op is used to terminate a conditional assembly segment. The
segment is initiated with the pseudo-op IF , which is described below. All
conditional assembly segments which have been initiated with the IF statement
must be terminated with the ENDIF statement or the error message IF WITHOUT
MATCHING ENDIF STATEMENT will be displayed. When there are multiple nested IF
statements, ENDIF ~ill terminate the last IF statement which was encountered.
The ENDIF pseudo-op does not require an argument.

FLAG1

96 29

4,6 ELSE

EQU
IF
JNZ
ENDIF

1
FLAG1 =
EXIT

;DEFINE FLAG1 AS TRUE
;INITIATE CONDITIONAL
; CODE GENERATED IF FLAG1 IS TRUE
;END OF CONDITIONAL

The ELSE pseudo-op is used to toggle conditional assembly following a IF
statement (see IF pseudo-op below). IF statements do not require an ELSE, but
one is allowed where it is convenient. The effect of the ELSE statement is to
allow the assembler to generate code for the instructions which fall between
the ELSE statement and the ENDIF statement when the argument of the original IF
condition is false (equal to zero). The ELSE statement must be preceeded by an
IF statement or the error message ELSE WITHOUT MATCHING IF STATEMENT will be
displayed. The ELSE pseudo-op does not require an argument .

FLAG1 EQU 0 ;DEFINE FLAG1 AS FALSE
IF FLAG1 ;INITIATE CONDITIONAL
JMP EXIT1 ; CODE NOT GENERATED - FLAG1 IS FALSE
ELSE ;TOGGLE CONDITIONAL

04 3F JMP LOOP ;CODE IS NOW GENERATED
ENDIF ;TERMINATE CONDITIONAL SEGMENT

Page 10

r
r
r
r
r
f
r
[

(

l
l
[

L

l
l
~

r

··•:;: -·. l

4,7 EOU
Equate symbol . The EQU pseudo-op creates a symbol with a defined value. The EQU
statement is preceeded by the symbol you wish to create and followed by an
argument which defines the value of the symbol . The value of the argument must
be known on the first pass of the assembler or an error message will be
displayed. The symbol may be followed by a colon, a space, or a tab.

OD
90 80
00 13

CR: EQU
BIGNUM EQU
ABCDEFG:EQU

DB
DW
DW

4.8 FILL

13
9080H
13H
CR
BIGNUM
ABCDEFG

;DEFINE CR AS TI!E VALUE 13 DECIMAL
;DEFINE BIGNUM AS TI!E VALUE 9080H
; DEFINE ABCDEFG AS THE VALUE 13 HEX
;NOW STORE THE VALUE OF CR
;STORE THIS VALUE
;STORE THIS VALUE

The FILL pseudo-op defines the character that is used as a filler for areas of
memory that are not defined. FILL requires an argument which is the new value
of the FILL character . The FILL character is used to pad memory between the
last location used during assembly and a subsequent ORG statement, and the
memory locations reserved by a DS (define storage) pseudo-op. In addition, when
running the CP/M version of this assembler, any characters needed to fill out
the last sector of the object file will be the current FILL character .

The default value of the FILL character is zero. The use of a fill character is
convenient in that it allows you to choose a character that represents the
unprogrammed condition of the ROM you are writing for. This allows you to write
code that will skip over previously programmed areas, or leave areas
unprogrammed which you may wish to use later. The 8048 family of
microprocessors use zero as the unprogrammed condition for all ROM locations.

00 00
00 00

FF FF FF

OS

FILL
DS

4

OFFH
3

;DEFAULT FILL CHARACTER IS ZERO

;DEFINE OFFH AS THE FILL CHARACTER
;DEFINE STORAGE FILLED WITH NEW VALUE

Page 11

4,9 IF
The IF statement is used to initiate conditional assembly. It requires an
argument which is evaluated as true or false. If the argument evaluates as a
number which is not zero, it is considered true. If the argument evaluates to
zero, it is considered false.

If the argument of an IF statement is true, the assembler will generate code
for the instructions which follow, unless an ELSE statement is encountered. If
an ELSE is encountered, the assembler will ignore the instructions which follow
it and generate no code until an ENDIF statement is encountered.

If the argument of the initial IF statement evaluates as false, the
instructions which follow it will be ignored and no code will be generated
until an ELSE or ENDIF statement is encountered, at which time the assembler
will once again begin to generate code.

IF statements may be nested up to 255 deep. If this limit is exceeded, the
error message CAN'T NEST MORE THAN 255 IF STATEMENTS will be displayed. All IF
statements must be terminated with an ENDIF statement or the error message IF
WITHOUT MATCHING ENDIF will be displayed.

FLAG EQU 1 ;DEFINE FLAG AS TRUE
IF FLAG:1 ;BEGIN CONDITIONAL

111 69 CALL RDRAM ;GENERATE CODE - CONDITION IS TRUE
Oll OD JMP POLALL ;GENERATE CODE - CONDITION TRUE

ELSE ;TOGGLE CONDITIONAL
CALL POLCOMP ;NO CODE GENERATED
JMP NOTFUL ;NO CODE GENERATED
ENDIF ;TERMINATE CONDITIONAL

4,]Q LI~I
The LIST pseudo-op is used to control the assembly listing. LIST requires an
argument, and if the argument evaluates as false (zero), the assembly listing
will be supressed. If another LIST statement is encountered with a true
(non-zero) argument, the assembly listing will resume. The default condition
for LIST is on, or true.

ON EQU 1 ;DEFINE ON AS TRUE
OFF EQU 0 ;DEFINE OFF AS FALSE

LIST ON ;LISTING IS TURNED ON (TRUE ARGUMENT)
111 69 CALL RDRAM
Oll OD JMP POLALL ;

LIST OFF ;LISTING IS TURNED OFF (FALSE ARGUMENT)

Page 12

r
r
r
r
r
r
f
(

[

(

l
[

L
L

l
l
t
l

.. ;

4, l l MICRO
This statement allows you to define which microprocessor in the MCS-48 family
you are writing for. MICRO is followed by an argument which determines the
instruction set that will be used by the assembler. The legal arguments, with
the microprocessors they support, are shown below:

8048 - 8048, 8748, 8748H, 8749, 8049, 87P50, 8050
8041A - 8041A, 8741A, 8042 , 8742
8022 - 8022
8021 - 8021

The defualt mode for the assembler is 8048 , which includes the 8748 and is the
component most likely to be used by the hobbyist or experimenter.

4, 12 ORG

MICRO
MICRO

8048
8022

;GENERATE CODE FOR AN 8048 OR 8748
;GENERATE CODE FOR AN 8022

This statement sets the program orgin. It is followed by an argument which is
the address at which you want to begin assembly of the instructions which
follow, If there are multiple ORG statements, each one must have an argument
that is greater than the location already reached by the assembler or the error
message CAN'T ORG BACKWARDS, ORG IGNORED will be displayed and the ORG will be
ignored . If there are undefined memory locations between an ORG statement and
the memory location reached by previously assembled instructions, the assembler
will generate FILL characters (see Section 4.8) for each undetermined memory
location.

04 06
00 00
00 00

23 OC
3A

4,13 PAGE

ORG
JMP

ORG
MOV
OUTL

0 ;BEGIN ASSEMBLY AT ADDRESS 0
ENTRY ;JUMP TO LOCATION 6

;FILL CHARACTERS GENERATED BETWEEN ORGS

6 ;BEGIN ASSEMBLY AT ADDRESS 6
A, 12 ;PROGRAM CONTINUES HERE
P2,A

This statement sends a formfeed character to the printer if the listing has
been directed to the printer . It requires no argument, it generates no object
code, and it sends one formfeed character to the printer every time it is
encountered.

46 4F
14 69
14 57
04 OD

26 OD
08
A8
14 88
04 OD

NOTFULL JNT1
CALL
CALL
JMP
PAGE

POLCOMP JNTO
INS
MOV
CALL
JMP

POLCOMP
RDRAM
WRTPRNT
POLLALL

POLLALL
A,BUS
RO,A
WRTRAM
POLLALL

;FORMFEED SENT TO LINE PRINTER HERE

Page 13

Appendix A - IMtruction Set Summary

The list which follows contains the instructions for all members of the MCS-48
family. The list includes the opcode, the operand, a brief description of the
instruction, and an indicator as to which microcontrollers each instruction
will work with. Each lettered column represents a group of chips, assigned as
follows:

A:8048, 8748, 8049, 8749 - B=8041A - C:8041 - D:8022 - E=8021

Opcode Operand

ADD
ADD
ADD
ADDC
ADDC
ADDC
At-IL
ANL
ANL
ANL
ANL
ANLD
CALL
CLR
CLR
CLR
CLR
CPL
CPL
CPL
CPL
DA
DEC
DEC
DIS
DIS
DJNZ
EN
EN
EN
EN
ENTO
IN
IN
IN
INC
INC
INC
INS

A,lldata
A,Rr ·
A,@Rr
A,lldata
A,Rr
A,@Rr
A,lldata
A,Rr
A,@Rr
BUS,lldata
Pp,#data
Pp,A
addr
A
C
FO
F1
A
C
FO
Fl
A
A
Rr
I
TCNTI
Rr,addr
DMA
FLAGS
I
TCNTI
CLK
A,DBB
A,PO
A,Pp
A
Rr
@Rr
A,BUS

Description

Add immediate to A
Add register to A (r=0-7)
Add data memory to A (r=0-1)
Add immediate with carry
Add register with carry (r=0-7)
Add data memory with carry (r=0-1)
And immediate to A
And register to A (r=0-7)
And data memory to A (r=0-1)
And immediate to BUS
And immediate to port (p=1-2)
And A to expander port (p=4-7)
Call subroutine
Clear A
Clear carry flag
Clear flag ·o
Clear flag 1
Complement A
Complement carry flag
Complement flag O
Complement flag 1
Decimal adjust A
Decrement A
Decrement register (r=0-7)
Disable external interrupt
Disable timer/counter interrupt
Decrement register and jump (r=0-7)
Enable DMA handshaking lines
Enable master interrupts
Enable external interrupt
Enable timer/counter interrupt
Enable clock output on line TO
Input DBB to A, clear IBF
Input port Oto A
Input port to A (p=l-2)
Increment A
Increment register (r=0-7)
Increment data memory (r=0-1)
Input BUS to A

Page 14

A B C D E

X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X

X
X

X X X
X X X
X

X X

X X X
X X X
X X X
X X X
X

X X
X X
X X
X X
X X
X X
X X
X X
X X

X X
X X
X X
X X

X X
X X

X X
X X

X
X
X X

X
X

X X
X X
X X
X X
X X

r
r
r
r
r
r
r
(

l
[

l
[

L

l
L

t
[

l

Opcode Operand Description A B C D E
--
JBb
JC
JFO
JF1
J!'.P
JMPP
JNC
JNI
JNIBF
JNTO
JNT1
JNZ
JOBF
JTF
JTO
JT1
JZ
MOV
MOV
MOV
MOV
MOV
MOV
MOV
HOV
HOV
HOV
MOV
HOV
MOVD
MOVD
MOVP
MOVP3
MOVX
MOVX
NOP
ORL
ORL
ORL
ORL
ORL
ORJ.D
OUT
OUTL
OUTL
OUTL

addr
addr
addr
addr
addr
@A
addr
addr
addr
addr
addr
addr
addr.
addr
addr
addr
addr
A,Odata
A,PSW
A,Rr
A,@Rr
A,T
PSW,A
Rr,A
Rr,Odata
@Rr,A
@Rr,lidata
STS,A
T,A
A,Pp
Pp,A
A,@A
A,@A
A,@Rr
Rr,A

A,ldata
A,Rr
A,@Rr
BUS,ldata
Pp,Odata
Pp,A
DBB,A
BUS,A
PO,A
Pp,A

Jump on accumulator bit (b=0-7)
Jump on carry flag= 1
Jump on FO flag= 1
Jump on Fl flag= 1
Jump unconditional
Jump indirect
Jump on carry flag= 0
Jump on external interrupt= O
Jump on IBF flag = 0
Jump on TO = O
Jump on Tl = 0
Jump on A not Zero
Jump on OBF flag=
Jump on timer flag=
Jump on TO = 1
Jump on T1 = 1
Jump on A Zero
Move immediate to A
Move PSW to A
Move register to A (r=0- 7)
Move data memory to A (r=0-1)
Read timer/counter
Move A to PSW
Move A to register (r=0-7)
Move immediate to register (r=0-7)
Move A to data memory (r=0-1)
Move immediate to data memory
A4-A7 to bits 4-7 of status
Load timer/counter
Input expander port to A (p=4-7)
Output A to expander port (p=4-7)
Move to A from current page
Move to A from page 3
Move external data memory to A (r=0-1)
Move A to external data memory (r=0-1)
No operation
Or immediate to A
Or register to A (r=0-7)
Or data memory to A (r=0- 1)
Or immediate to BUS
Or immediate to port (p=1 - 2)
Or A to expander port (p=4-7)
Output A to DBB, set OBF
Output A to BUS
Output A to port 0
Output A to port (p:1-2)

Page 15

X X X
X X X X X
X X X
X X X
X X X X X
X X X X X
X X X X X
X

X X
X X X X
X X X X
X X X X X

X X
X X X X X
X X X X
X X X X
X X X X X
X X X X X
X X X
X X X X X
X X X X X
X X X X X
X X X
X X X X X
X X X X X
X X X X X
X X X X X

X
X X X X X
X X X X X
X X X X X
X X X X X
X X X
X
X
X X X X X
X X X X X
X X X X X
X X X X X
X
X X X
X X X X X

X X
X

X X
X X X X X

r
Opcode Operand Description A B C D E

--- r
RAD Move conversion result to A X
RET Return from CALL X X X X X
RETI Return from interrupt X
RETR Return and restore status X X X

r
RL A Rotate A left X X X X X
RLC A Rotate A left through carry flag X X X X X
RR A Rotate A right X X X X X r
RRC A Rotate A right through carry flag X X X X X
SEL ANO Select analog input 0 X
SEL AN1 Select analog input 1 X f
SEL MBO Select memory bank 0 X
SEL MB1 Select memory bank 1 X
SEL RBO Select register bank 0 X X X
SEL RB1 Select register bank 1 X X X r
STOP TCNT Stop timer/counter X X X X X
STRT CNT Start counter X X X X X
STRT T Start timer X X X X X r
SWAP A Swap nibbles of A X X X X X
XCH A,Rr Exchange A and register (r=0-7) X X X X X
XCH A,@Rr Exchange A and data memory (r=0-1) X X X X X
XCHD A,@Rr Exchange nibble of A and data memory X X X X X

r
XRL A,#data Exclusive or immediate to A X X X X X
XRL A,Rr Exclusive or register to A (r=0-7) X X X X X
XRL A,@Rr Exclusive or data memory to A (r=0-1) X X X X X

[

(

l
[

[

L
l
l
[

Page 16 L
, .. l

Appendix B - Instruction Mnemonics and Opcodes

The following listing is an assembly of a source file which was written to test
the assembler by using every instruction and all addressing modes. Thi s
printout is also an example of the listing format of the assembler. The left
hand column shows ... the address, followed by the opcode(s). The right hand two
columns are the instruction mnemonics.

;instructions for the 8048
MICRO 8048

0000 68 ADD A,RO
0001 69 ADD A, Rl
0002 6A ADD A,R2
0003 6B ADD A,R3
0004 6C ADD A, R4
0005 6D ADD A,RS
0006 6E ADD A, R6
0007 6F ADD A, R7
0008 60 ADD A,@RO
0009 61 ADD A,@Rl
COCA 0355 ADD A,1155H
oooc 78 ADDC A, RO
OOOD 79 ADDC A, Rl
OOOE 7A ADDC A,R2
OOOF 7B ADDC A,R3
0010 7c ADDC A,R4
0011 7D ADDC -A,RS
0012 7E ADDC A,R6
0013 7F ADDC A, R7
0014 70 ADDC A,@RO
0015 71 ADDC A,@Rl
0016 1355 ADDC A,1155H
0018 58 ANL A,RO
0019 59 ANL A, R1
001A SA ANL A, R2
001B 5B ANL A,R3
001C SC ANL A,R4
0010 SD ANL A, RS,
001E SE ANL A,R61

001F SF ANL A, R7
0020 50 ANL A,@RO
0021 51 ANL A,@Rl
0022 5355 ANL A,1155H
0024 9855 ANL BUS,1155H
0026 9955 ANL P1, 1155H
0028 9A55 ANL P2, 1155H
002A 9C ANLD P4 ,A
002B 9D ANLD PS ,A
002C 9E ANLD P6 ,A
002D 9F ANLD P7,A
002E 1455 CALL 55H
0030 B455 CALL 555H

Page 17

, ,.

r
0032 27 CLR A [0033 97 CLR C
0034 AS CLR F1
0035 85 CLR FO r 0036 37 CPL A
0037 A7 CPL C
0038 95 CPL FO r 0039 B5 CPL F1
003A 57 DA A
003B 07 DEC A
003C ca DEC RO f 003D C9 DEC R1
003E CA DEC R2
003F CB DEC R3 r 0040 cc DEC R4
0041 CD DEC R5
0042 CE DEC R6
0043 CF DEC R7 r 0044 15 DIS I
0045 35 DIS TCNTI
0046 E855 DJNZ R0,55 H [0048 E955 DJNZ R1 ,55H
004A EA55 DJNZ R2 ,55H
004C EB55 DJNZ R3,55H

(004E EC55 DJNZ R4,55H
0050 ED55 DJNZ R5 ,55H
0052 EE55 DJNZ R6 ,55H
0054 EF55 DJNZ R7,55H [. 0056 05 EN I
0057 25 EN TCNTI
0058 75 ENTO CLK [0059 09 IN A,P1
005A OA IN A,P2
005B 17 INC A

l 005C 18 INC RO
005D 19 INC R1
005E 1A INC R2
005F 1B INC R3 l 0060 1C INC R4
0061 1D INC R5
0062 1E INC R6

L 0063 1F INC R7
0064 10 INC @RO
0065 11 INC @R1

L 0066 08 INS A,BUS
0067 1255 JBO 55H
0069 3255 JB1 55H
006B 5255 JB2 55H k 006D 7255 JB3 55H
006F 9255 JBJJ 55H
0071 B255 JB5 55H [0073 D255 JB6 55H
0075 F255 JB7 55H
0077 F655 JC 55H

Page 18 l
:/ , :· ~-

0079 B655 JFO 55H
007B 7655 JF1 55H
007D 0455 JMP 55H
007F A455 JMP 555H
0081 B3 JMPP @A
0082 F.655 JNC 55H
0084 8655 JNI 55H
0086 2655 JNTO 55H
0088 4655 JNT1 55H
008A 9655 JNZ 55H
008C 1655 JTF 55H
008E 3655 JTO 55H
0090 5655 JT1 55H
0092 C655 JZ 55H
0094 2355 MOV A, 1'55H
0096 C7 MOV A,PSW
0097 F8 MOV A,RO
0098 F9 MDV A,R1
0099 FA MDV A,R2
009A FB MOV A, R3
009B FC MOV A, R4
009C FD MOV A, R5
009D FE MOV A, R6
009E FF MOV A,R7
D09F FO MOV A,@RO
COAD F1 MOV A,@R1
OOA1 42 MOV A,T
DOA2 D7 MOV PSW ,A
OOA3 AB MOV · RD,A
OOA4 A9 MOV R1 ,A
OOA5 AA MDV R2 , A
OOA6 AB MDV R3 , A
OOA7 AC MOV R4, A
OOA8 AD MDV R5 ,A
OOA9 AE MDV R6, A
OOAA AF MOV R7 ' A
OOAB B855 MDV RO,il55H
COAD B955 MOV R1,855H
OOAF BA55 MOV R2 ,1'55H
OOB1 BB55 MOV R3, il55H
00B3 BC55 MOV R4,IT55H
00B5 BD55 MDV R5 , D55H
OOB7 BE55 MOV R6 , D55H
00B9 BF55 MOV R7 , 055H
OOBB AO MOV @RO ,A
OOBC A1 MOV @R1 ,A
OOBD B055 MOV @RO,U55H
OOBF B155 MDV @R1,D55H
OOC1 62 MDV T,A
OOC2 oc MDVD A, P4
OOC3 OD HDVD A, P5
OOC4 OE HOVD A, P6
OOC5 OF MDVD A, P7
OOC6 3c MDVD P4, A

Page 19

.·, :

r
OOC7 3D HOVD P5,A r OOC8 3E HOVD P6,A
OOC9 3F HOVD P7, A
OOCA A3 HOVP A,@A r OOCB E3 HOVP3 A,@A
oocc 80 MOVX A,@RO
OOCD 81 MOVX A,@R1
OOCE 90 MOVX @RO ,A r OOCF 91 MOVX @R1,A
00D0 00 NOP
OOD1 48 ORL A,RO r 00D2 49 ORL A, R1
OOD3 4A ORL A,R2
00D4 4B ORL A,R3 r OOD5 4C ORL A,R4
OOD6 4D ORL A,R5
OOD7 4E ORL A, R6
00D8 4F ORL A, R7 r 00D9 40 ORL A,@RO
OODA 41 ORL A,@R1
OODB 4355 ORL A,1155H [OODD 8855 ORL BUS,1155H
OODF 8955 ORL P1, 1155H
OOE1 8A55 ORL P2, 1155H
OOE3 8C ORLD P4 ,A (
OOE4 8D ORLD PS ,A
OOE5 8E ORLD P6,A
OOE6 8F ORLD P7 ,A l OOE7 02 OUTL BUS',A
OOE8 39 OUTL P1,A
OOE9 3A OUTL P2 ,A [OOEA 83 RET
OOEB 93 RETR
OOEC E7 RL A
OOED F7 RLC A
OOEE 77 RR A
OOEF 67 RRC A
OOFO E5 SEL HBO L OOF1 F5 SEL HB1
OOF2 C5 SEL RBO
OOF3 D5 SEL RB1

L OOF4 65 STOP TCNT
OOF5 45 STRT CNT
OOF6 55 STRT T
OOF7 47 SWAP A l OOF8 28 XCH A, RO
OOF9 29 XCH A, R1
OOFA 2A XCH A,R2 l OOFB 2B XCH A, R3
OOFC 2C XCH A,R4
OOFD 2D XCH A,R5

t OOFE 2E XCH A, R6
OOFF 2F XCH A, R7
0100 20 XCH A,@RO

Page 20 l
.. ~

0101 21 XCH A,@Rl
0102 30 XCHD A,@RO
0103 31 XCHD A,@Rl
0104 D8 XRL A, RO
0105 D9 XRL A, R1
0106 DA XRL A,R2
0107 DB XRL A,R3
0108 DC XRL A,R4
0109 DD XRL A, RS
010A DE XRL A,R6
010B OF XRL A,R7
OlOC DO XRL A,@RO
010D D1 XRL A,@R1
010E D355 XRL A,tl55H

;
;instructions for the 8041A

MICRO 8041A
0110 ES EN OMA
0111 FS EN FLAGS
0112 22 IN A,DBB
0113 D655 JllIBF 155H
0115 8655 JOBF 155H
0117 90 MOV STS,A
0118 02 OUT DBB,A

;
;instructions for the 8022

MICRO 8022
0119 80 RAD
011 A 93 RETI
011B 85 SEL ANO
011C 95 SEL ANl

;
;instructions for the 8021

MICRO 8021
011D 08 IN A,PO
011 E 90 OUTL PO,A

;---------------------------------
Expressions

;---------------------------------
C33C STAN EQU OC33CH
6699 FRED EQU 6699H
0001 Ll EQU 1
0001 L2 EQU 1B
0001 L3 EQU 1D
0001 L4 EQU 1Q
0001 LS EQU 1H
007B L6 EQU 123D
0096 L7 EQU 10010110B
0141 L8 EQU 321D
0305 L9 EQU 77 3
1234 L10 EQU 1234H
011F L11 EQU $
0053 L12 EQU •s•
5352 L13 EQU 'SR'

Page 21

r
5327 L14 EQU tSI It r 2753 L1 5 EQU ''' S'
c33c L1 6 EQU STAN
FFFE L17 EQU - 2 r FFFE L18 EQU - 2
FEE1 L19 EQU - $
3CC4 L20 EQU - STAN r FFAD L21 EQU -•s•
ACAE L22 EQU -'SR '
FF34 L23 EQU - 11001100B
FFFD L24 EQU NOT 2 r 0002 L25 EQU +2
E7 BD L26 EQU STAN OR FRED
E7BD L27 EQU STAN I FRED

t"• A5A5 L28 EQU STAN XOR FRED
4218 L29 EQU ST AN AND FRED
29D5 L30 EQU STAN + FRED

r 5CA3 L31 EQU STAN - FRED
8678 L32 EQU STAii 1 2
619E L33 EQU STAN / 2
003C L34 EQU STAN MOD 100H [FFFF L35 EQU STAN = STAN
0000 L36 EQU STAN: FRED
FFFF L37 EQU STAN> FRED

(0000 L38 EQU FRED> STAN
0000 L39 EQU STAN > STAN
0000 L40 EQU STAN < FRED
FFFF L41 EQU FRED< STAN (0000 L42 EQU STAN < STAN
FFFF L43 EQU STAN>= FRED
0000 L44 EQU FRED>= STAN l FFFF L45 EQU STAN >= STAN
0000 L46 EQU STAN<= FRED
FFFF L47 EQU FRED <= STAN
FFFF L48 EQU STAN <= STAN
FFFF L49 EQU STAN I= FRED
0000 L50 EQU STAN I= STAN
C33C L51 EQU (STAN) l c33c L52 EQU (STAN)
C33C L53 EQU ((((STAN))))
0012 L54 EQU 3 1 (4 + 2)

L OOOE L55 EQU (3 1 4)+2
OOOE L56 EQU 3 1 4 + 2
0000 L58 EQU 0 I STAN

L 0001 L59 EQU STAN / STAN
0000 L60 EQU 1 / STAN

l
[

Page 22 l
. .. , ~ ...

Appendi x c - Error Messages

Branch out of page boundary - An attempt has been made to do a conditional jump
into another page.

Byte value truncated - An attempt has been made to use a 16 bit value where an
8 bit value is required.

Can ' t ORG backwards, ORG ignored - An ORG statement has been used which
specifies an address lower than that which has already been reached by the
assembler (see Section 4 . 12).

Can ' t nest more than 255 IF statements - An attempt has been made to use more
than 255 unterminated IF statements simultaneously (see Section 4.9) .

Can't open INPUT file - The source file does not exist or a disk I/O error has
occurred.

Can't open OUTPUT file - The disk is write protected or a disk I/O error has
occurred.

Data found after END - The END pseudo-op is not the last statement in the
source file (see Section 4.4) .

Disk CLOSE error - A disk I/O error has occurred while closing the output file.

Disk WRITE error - A disk I/O error has occurred while writing the output file .

Division by zero - An expression has been evaluated to a condition where a
number is being divided by zero.

Doubly defined label - An attempt has been made to define the same label more
than once.

ELSE without matching IF statement - An ELSE statement has been encountered
without a previously defined IF statement (see Sections 4.9 and 4.6).

ENDIF without matching IF statement - An ENDIF statement has been encountered
without a previously defined I~ statement (see Sections 4.9 and 4 . 5) .

1

IF without matching ENDIF statement - An IF statement has not been terminated
by an ENDIF before the end of the source file was encountered (see
Sections 4.9 and 4.5) .

Illegal label - An attempt has been made to use a label which does not meet the
conditions defined under Section 3 . 1 .

Illegal number - An attempt has been made to use a number which is either too
large or contains illegal characters (see section 3.2).

Input file not specified or illegal - The command line does not contain a
properly specified source file name (see Section 2.1).

Page 23

Invalid opcode - The instruction is not valid for the processor defined by the
MICRO pseudo-op. See Appendix A for a list of valid opcodes.

Invalid operand - The operand is either missing , illegal, or specified
incorrectly for the preceeding instruction {see Section 1 .4 and Appendix
A).

Invalid short string - A syntax error has occurred during the specification of
a single or double byte character constant {see Section 3.3).

Invalid string - An uneven number of delimiters has been used when defining a
string {see Section 3.3).

Invalid switch - A syntax error has occurred in the switch portion of the
command line {see Section 2.3).

No END found - No END pseudo-op was found at the end of the source file {see
Section 4 . 4).

Out of symbol table memory - There is insufficient memory to perform the
assembly.

Parentheses nested too deep - An attempt has been made to hav e more than four
levels of parentheses open simultaneously .

Parentheses uneven - An expression has been used which contains an open
parenthesis without a matching closed parenthesis.

Phase error, value changed on pass 2 - The value of a symbol determined on the
first pass of the assembler is not the same as the value arrived at on the
second pass.

Ran out of memory during symbol table sort - There is insufficient memory to
perform the assecbly.

Stack overflow - An expression has been used which cannot be evaluated.

Symbol not defined on pass 1 - A symbol has been used which references a label
which was not defined on the first pass of the assembler.

\
Undefined symbol - An instruction references a label which has not been defined

elsewhere in the source.

Page 24

r
r
r
r
r
r
r
I
(

l
l

L
l
l
l
[

l

I
T

f

;
RS232

Appendix P - Sample I/0 and Math Routines

•••
•
•
•

Serial I/0 and Math routines
•
•
•

•••
EQU 00001000B ;serial output bit on port 2

The delay constant for serial data rate is computed with:
t = {400,000 I BAUD - 24) / 6

;
Bd9600 EQU . { (40000 / (9600 I 100) + 5) I 10 - 24) I 6
Bd1200 EQU ((40000 I (1200 / 100) + 5) I 10 - 24) I 6
Bd300 EQU ((40000 I (300 I 100) + 5) I 10 - 24) I 6

;
; call to read a byte from serial port, data input on T1

Enter: RO' = delay constant
Exit: A= byte

; R7 ,R7' = undefined
Serin MOV R7 ,118 ;read in 8 bits
Serin1 JNT1 Serin1 ;wait till line goes high
Serin2 JT1 Serin2 ;wait till line goes low

CALL HlfDly ;wait for half a bit
JT1 Serin • ;branch if start bit missing

Serin3 CALL BitDly2 ;delay for one bit

JNT1 Serin4 ;branch if data bit low
CLR C ; clear the carry
CPL C
RRC A ;rotate the data into A
DJNZ R7 ,Serin3 ; dcr bit count, test for done
RET

;
Serin4 CLR C ;set the carry bit

NOP ; keep the timing right
RRC A ;rotate the data into A
DJNZ R7 ,Serin3 ;dcr bit count, test for done
RET

Page 25

;call SerOut to set a byte out the serial port
Enter: A= byte to be sent

RO'= delay constant
Exit: A= byte sent out

; R7, R7' = undefined
SerOut MOV R7,18 ;transmit 8 bits

;

ANL
CALL

Ser0ut1 RR
JB7

;

ANL
JMP

Ser0ut2 ORL
JMP

;
Ser0ut3 CALL

DJNZ

'

ORL
CALL
RET

;call to delay
Enter:

; Exit:
BitDlyl NOP

NOP
BitDly2 NOP

NOP
BitDly3 NOP

NOP
NOP
NOP
SEL
MOV
MOV

BitDly4 NOP
NOP
NOP
DEC
JNZ

MOV
SEL
RET

P2,0-RS232
BitDly1

A
Ser0ut2

P2,rRS232
Ser0ut3

P2,URS232
Ser0ut3

BitDly3
R7 ,Ser0ut1

P2 , URS232
BitDly1

; send the start bit
;delay for 1 bit time

;rotate to get next bit
;branch if bit is a one

;set the bit low

; set the bit high
;keep the timing straight

;delay one bit time
;go do next bit if not done

; send the stop bit
;delay one bit time

one serial bit time
RO' = delay constant
R7' = undefined

RB1
R7 ,A
A,RO

A
BitDly4

A, R7
RBO

;delay for 8 cycles first

;delay for 6 cycles first

;delay for 4 cycles first

;select second register bank
; save A in R7'
;get the time delay constant
;delay loop time= 6 cycles
;nops delay for 3

;dee the loop counter
;loop till done

;restore A
; select first register bank

Page 26

r
r
r
r
r
r;;

[

[

[

l
l
!
l
l
l

;call to delay
Enter:

; Exit:
HlfDly SEL

MOV
MOV

; + HlfDly1 DEC
JNZ

MOV
SEL
RET

a half serial bit time
RO' = delay constant
R7' = undefined
RB1
R7 , A
A,RO

A
HlfDly1

A,R7
RBO

; select second register bank
;save A in R7 '
;get the time delay constant

;dee the loop counter
; loop till done

;restore A
;select first register bank

;---------- .----------- --------------------------------------
Math Utilities

;---
' ;call to do a double subtraction

' Sub tr ct

Enter: R1,R2 = Minuend, R1 = MSB

Exit:

MOV
CPL
ADD
CPL
MOV
MOV
CPL
ADDC
CPL
MOV
RET

R3,R4 = Subtrahend , R3 = MSB
R3,R4 = difference, R3 = MSB
R1,R2 = Minuend, Rl = MSB
A, R2 ;subtract R4
A
A,R4
A

from R2

R4,A
A, R1
A
A,R3
A
R3,A

; put difference in R4
. ; subtract R3 from R1

; include carry from above

;put difference in R3

Page 27

;call to do a 8
Enter:

Exit:

Mul tply MOV
MOV
MOV

Mult1

;
Mult2

MOV
MOV
CLR
RLC
MOV
MOV
RLC
MOV
MOV
RLC
MOV

MOV
CLR
RLC
MOV
JNC

MOV
ADD
MOV
MOV
ADDC
MOV
MOV
ADDC
MOV

DJNZ
RET

x 16 multi ply, product 24 bits
R1 = multiplicand #1
R2,R3 = multiplicand #2 1 R2 = MSB
R4,R5,R6 = product, R4 = MSB
R2,R3 = multiplicand D2, R2 = MSB
R1,R7 = undefined
R4,HO ;start with a total of O
R5 ,DO
R6 ,DO ;LSB

R7 ,us
A,R6
C
A
R6 ,A
A, R5
A
RS ,A
A, R4
A
R4 ,A

A, R1
C
A
R1, A
Mult2

A, R6
A,R3
R6 ,A
A,RS
A,R2
RS,A
A,R4
A,UO
R4 ,A

R7, Mul t1

;multiply all 8 bits
;double the product

;rotate the low byte

;rotate the middle byte

;rotate the high byte

;shift multiplicand

;if high bit O don't add on

;add multiplicand to product
;add low bytes

;add middle bytes

;add on carry to high byte

;go multiply next bit
;all done

Page 28

I r
r
r
r
r
r
r
[

[.

l
l
t
L
L
L
t
r
L

-· h

; ,

;call to divide
Enter:

Exit:

Divide MOV
MOV
MOV

Div1

MOV
CPL
INC
MOV

MOV
MOV
CLR
RLC
MOY
MOV
RLC
MOV
MOV
RLC
MOV

•
MOV
ADD
JNC

j

Div2

MOV
INC

MOV
CLR
RLC
MOV
MOV
RLC
MOV
MOV
RLC
MOV

DJNZ
RET

a 24 bit number by a 8 bit one
R4, R5, R6 = dividend, R4 = MSB
R3 = divisor
ROt Rl, R2 = quotient, RO= MSB
R4, R5, R6 = remainder • 2, R4 = MSB
R3,R7 = undefined
RO,DO ;start with quotient= 0
R1, no
R2 , DO

A, R3
A
A
R3,A

R7,D16+1
A,R2
C
A
R2,A
A, R1
A
R1, A
A,RO
A
RO,A

A,R3
A,R4
Div2

R4,A
R2

A, R6
C
A
R6 ,A
A,R5
A
R5 ,A
A, R4
A
R4,A

R7 ,Div1

;negate divisor

;R3 = -divisor

;divide 24 bit number
;shift quotient left once
;quotient= quotient• 2
;shift the low byte

; shift the middle byte

;shift the high byte

;subtract divisor from dividend
.; dividend bits 23 - 16
;jmp dividend[23-16] < divisor

;Div[23-16]=Div[23-16]-divisor
;set bit in quotient --;;>
;shift dividend left once
;dividend= dividend• 2
;shift the low byte

; shift the middle byte

; shift the high byte

;go divide next bit

Page 29

;call

j

Negate

;

to negate
Enter:
Exit:
MOV
CPL
ADD
MOV
MOV
CPL
ADDC
MOV
RET

a 16 bit number
R2,R3 =binary# to negate, R2 = MSB
R2,R3 = negated number
A,R3 ;get the low byte
A ;invert it
A,fJ1 ;increment it
R3,A ;R3 = low byte
A,R2 ;get high byte
A ;invert it
A,fJO ;add carry from before
R2,A ;R2 = high byte

;call to convert a 16 bit number to a 4 digit BCD number
Enter: R3, R4 = binary D to be changed to BCD, R3 = MSB
Exit: R3,R4 = number in BCD, R3 = MSB

R5 ,R6, R7 = undefined
CnvBcd MOV R5, /fO ;zero the 4 digit BCD array

HOV R6 , lfO

MOV R7, 1116 ; convert a 16 bit number
CnvBcd1 MOV A,R4 ; shift the binary number left

CLR C ;first the low byte
RLC A
MOV R4 ,A
MOV A, R3 ;then the high byte
RLC A
MOV R3,A

MOV A, R6 ;double low BCD fl+ carry
ADDC A, R6
DA A ;decimal fix it
MOV R6,A ; save the new BCD value
MOV A, R5 ;double high BCD D + carry
ADDC A, R5
DA A ;decimal fix it
MOV R5 , A ; save the new BCD value
DJNZ R7 , CnvBcd 1 ;go stick on next bit of II

MOV A, R5 ;put result in R3 & R4
MOV R3 ,A
MOV A, R6
MOV R4,A
RET

Page 30

": : .· .. :

r
r
r
r
r
r~
r
[

[

L

l
I
L
L
L
L
t
L

